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Abstract: This paper addresses the Cook and Kress method regarding the use of mathematical 
programming to derive weights from pairwise comparison ratio matrices. We note that the Cook and 
Kress formulation has the shortcoming that alternative optimal solutions may occur, which would lead to 
an infinite set of possible weights. This paper proposes to resolve the problem by formulating a Phase II 
optimization procedure to be solved using quadratic programming. This mathematical formulation is 
based on the determination of a weight vector that is statistically most likely to cause the associated 
pairwise comparison matrix. It is concluded that the Cook and Kress method accompanied with the 
proposed Phase II approach can always derive a unique set of weights from a pairwise comparison 
matrix. 

Keywords: Pairwise comparison matrices; Alternatives weighting; Mathematical programming; Likeli- 
hood function 

1. The Cook and Kress method 

The problem of deriving weights from pairwise comparison ratio matrices is to extract a weight vector 

w = ( w i ) ,  w i > 0 ,  i = 1  . . . . .  n, 

which is usually normalized as ET= lWi = 1, where n is the number of compared alternatives, from a 
positive reciprocal matrix 

A = ( a i r  ) , a i r>O,  a , = l ,  a i r = l / a r i ,  i , j = l  . . . . .  n ,  (1.1) 

where air is the intensity of preference of alternative i over j. Pairwise comparison matrix A is said to be 
consistent if and only if air. ark = aik, i, j ,  k = 1 . . . . .  n. This condition is equivalent to the condition that 
element air is expressed as air = w i / w  r, i, j = 1 . . . . .  n, for some positive values w i and w r (Cook and 
Kress, 1988; Takahashi, 1990). Therefore,  we can instantly obtain a unique weight vector w correspond- 
ing to the pairwise comparison matrix A when the matrix is consistent. But, in general, the given 
pairwise comparison matrix is inconsistent, so that we need methods for deriving weights. 
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Cook and Kress (1988) proposed a unique method. They first proved that the unique distance between 
any two pairwise comparison matrices P and W with property (1.1) is given by 

n - 1  ~ 

d ( P ,  Q)  = Y'~ I ln (p~Jq i j )  l, (1.2) 
i = 1  j = i + l  

where Pij and qij a r e  the elements of matrices P and Q, respectively. Then, the problem of deriving 
weight vector w from pairwise comparison matrix A can be considered as follows: Although the given 
pairwise comparison matrix is generally inconsistent, it must be reflecting the unknown weights. That is, 
the given matrix can be considered close to the consistent matrix corresponding to the unknown weights. 
Therefore, the problem is to find a consistent matrix as close as possible to the given matrix A. 

Using distance measure (1.2) and noting that the elements of consistent pairwise comparison matrix 
are w i / w  j, i, j = 1 . . . . .  n, the problem can be expressed in mathematical programming form: 

n- - I  

Minimize ~ ~ [ln[aij/(wi/wi)] l 
i=1  j = i + l  

(1.3) 
subject to I I  wi = 1, 

i = l  

w i > 0 ,  i = 1  . . . .  , n ,  

where I-Int = 1Wi = 1 is a normalization condition on the weight vector. Let x i = In wi, i = 1,. .. , n, then 
problem (1.3) is written as follows: 

Minimize 

subject to 

. - 1  

Iln a i j - x i  + xj l  
i=1  j = i + l  

~ X i = O, 
i=1  

( x  i unconstrained, i = 1 , . . . , n ) .  

This problem is equivalent to the following goal programming problem: 

Minimize ~ (d~ + dg )  
i - 1  j = i + l  

subject to x i - x j - d ~ + d g - - l n a i j ,  i = l  . . . . .  n - l ,  j = i + l  . . . . .  n,  

~ X i = O, 
i=1  

d + , d ~ > O ,  i = 1  . . . .  , n - l ,  j = i + l  . . . . .  n, 

( x  i unconstrained, i = 1 . . . . .  n) ,  

where d~ and d~ are difference variables in goal programming. 
From the solution to problem (1.4), the weights are given by 

wi=exp(xi) , i = 1  . . . . .  n. 

The weights normalized additionally to sum up to unity are 

w i = w i / ~ w i ,  i = l  . . . . .  n. 
j = l  

(1.4) 

(1.5) 

(1.6) 
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That is the outline of the Cook and Kress method. 
In this way, the Cook and Kress method is a good method that applies the concept of distance 

measures appropriately. The shortcoming of this method is that there often exist plural consistent 
matrices at the minimum distance from the given pairwise comparison matrix. This implies that the 
linear programming (LP) problem (1.4) may have the minimum value at plural extreme points, which 
would lead to an infinite set of possible weights. 

Let us show an example: Suppose that an (inconsistent) pairwise comparison matrix is given by 

A =  ½ 1 7 .  (1.7) 

2 1 

Then, using available LP softwares, we can easily have an optimal solution x 1 = (0.5493 -0.5493 0) to 
LP problem (1.4) and the corresponding weight vector 1~ 1 = (0.5234 0.1745 0.3022). However, ~1 is not a 
unique weight vector. In this case, at least x 2= (0.5014 -0.5973 0.0959) and x 3= (0.6932 -0.6932 0) 
are also optimal extreme-point solutions to LP problem (1.4). Moreover, since every convex combination 
of x ~, x 2 and x 3 is the optimal solution, an infinite number of weight vectors are obtained. That is, the 
weights to be got are indefinite. 

Unfortunately, the case where LP problem (1.4) has plural optimal extreme-point solutions often 
occurs because the Cook and Kress method takes the form of, so to speak, the least-absolutes method. In 
the next section, we consider a way to get over this shortcoming of the Cook and Kress method. 

2. Proposing the Phase II approach 

Let us consider the problem dividing into two phases as follows: LP problem (1.4) yields a consistent 
matrix at the minimum distance from the given pairwise comparison matrix (Phase I). When problem 
(1.4) has plural optimal solutions, we must select one out of the optimal solutions (Phase II). The Cook 
and Kress method completes Phase I. We need a method to deal with Phase II, which should be added 
to the Cook and Kress method. 

Let Omi n be the minimum distance obtained in Phase I. Then, the problem in Phase II is to select one 
weight vector out of the weight vectors that compose consistent matrices at distance Omi n from the given 
pairwise comparison matrix. For this purpose, a criterion other than distance is needed. We adopt 
l ikel ihood as the criterion. That is, we consider, among the weight vectors composing consistent matrices 
at distance Dmin, which weight vector is statistically most likely to cause the given pairwise comparison 
matrix. 

We consider on the basis of the usual multiplicative model as follows: 

aij = ( w i / w j ) e i j  , i, j = 1 . . . . .  n ,  (2.1) 

where ezj is the positive error term following a certain distribution. This model means that pairwise 
comparison ratio aij is caused by the ratio of unknown weights w i / w j  and disturbance e~j. Taking 
logarithms of (2.1) yields 

ln aij = ln wi - ln wj + In eij ,  i, j = l . . . . .  n ,  

where the mean of In e~j is supposed to be zero. 
Assuming that In ei j  follows a normal distribution with mean zero and variance tr 2, N(0, tr2), the 

probability density of aij is given by 

1 [ (In aij -- In w i + In wj)  2 
f ( a i j  ) 2Vt~oraij exp[-- 2~r2 , i, j = 1 . . . . .  n. 
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When samples aij, i, j = 1 , . . . ,  n, are given, the logarithmic likelihood function is 

,n tw , •, . 20-2 
i=1  j = l  i=1  j = l  

To get the maximum likelihood estimates of w i, i = 1 . . . . .  n, we can maximize this logarithmic likelihood 
function• Noting that the estimates of wi do not depend on the estimate of 0 -2 and that 

In aii = 0, In air = - l n  aji, i, j = 1 . . . . .  n, 

the above is equivalent to minimizing 

~ (In w~- In wj - I n  aij) 2. (2.2) 
i=1  j--i+l 

As for the assumption that disturbance In eij follows N(0, ~2), there is the following objection (e.g., 
Basak, 1991; Saaty, 1990): If In eij follows N(0, 0-2), then eij follows the log-normal distribution 

2 2 

with mean exp(½0- 2) (>  1). Therefore,  the mean of aij in model (2.1) cannot be w i / w  j. 
We do not think this is an anomaly• When the disturbance eij follows log-normal distribution (2.3), the 

median of eij is 1, i.e., 

Prob[O<eij  < 1] = Prob[1 <=eij <=oo ] . 

We think this is natural because it implies that, in model (2.1), air is disturbed by eir so that 
probabilities of underestimating and overestimating w i / w  r would be the same• However, since the 
ranges [0, 1] and [1, ~] are different, the mean of ei~ is greater than 1. That  is, for model (2.1), it is not a 
fallacy that the mean of aij cannot be w~/w  s, but a natural consequence in the case where the median of 

air should be w i / w  r. 
Therefore,  to select one out of the weight vectors composing consistent matrices at distance Dmi n in 

Phase II, we can minimize expression (2.2) subject to the distance from the given pairwise comparison 
matrix is Dmi n. Letting x i = In w i, i = 1 . . . . .  n, and noting that Dmin is obtained as the minimum value of 
the objective function to LP problem (1.4), the problem in Phase II can be expressed in the following 
quadratic programming (QP) form: 

n - 1  ~ 

Minimize ~ ( x i - x j - l n  aij) 2 
i=1  j - i + l  

subject to x i - x j - d  + +d/~ = I n  air, i = l , . . . , n - 1 ,  j = i + l  . . . . .  n, 
71 

E X i = 0 ,  
i - I  (2•4) 
n 1 

g ~ (d~ +d~)=D, , , i , , ,  
i - 1  j = i + l  

d + , d ~ > O ,  i = l , . . . , n - 1 ,  j = i + l  . . . . .  n, 

( x  i unconstrained, i = 1 . . . . .  n) .  

We can get a solution to problem (2•4) using mathematical programming softwares, e.g., LINDO 
(Schrage, 1984), and the Appendix guarantees that the solution is a unique optimal solution• Using (1.5) 
and (1.6), we can obtain only one weight vector• 
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In the case of example (1.7), LP problem (1.4) yields the minimum objective function value 0.2877. 
Letting Dmi n = 0.2877 and solving QP problem (2.4), we obtain the optimal solution x = 
(0.5973 -0 .5973 0) and can determine a unique set of weights • = (0.5396 0.1634 0.2970). 

In general, it is difficult to know if an LP problem has plural optimal solutions when we solve it using 
softwares. Therefore,  we should deal with Phase II whether LP problem (1.4) has plural optimal 
solutions or not. Then, this paper proposes to take this Phase II optimization approach together with the 
Cook and Kress method so that we can always obtain a unique set of weights. That  is, the procedure 
using mathematical programming to derive weights from a pairwise comparison matrix can be summa- 
rized as the following two-phase approach: 

Phase L Using the Cook and Kress method, i.e., solving LP problem (1.4), obtain the minimum 
distance from the given pairwise comparison matrix to consistent matrices, Dmin. 

Phase II. Solving QP problem (2.4) using the value of Dmi,, obtain the optimal solution and determine 
weight vector ~. 

Appendix 

If the set of feasible solutions to QP problem (2.4) has only one element, problem (2.4) has only one 
optimal solution. 

Let x 1 and x 2 be the feasible solutions to QP problem (2.4) and suppose that x 1 :~x 2, then 

n n 

E xl = E x2 = 0. (A.1) 
i = 1  i ~ 1  

Let 

n-1 
g ( x )  = E k (Xi - -Xj  --In aiy) a 

i=1 j=i+l 

and consider the function 

h ( A ) = g [ ( 1 - A ) x l + A x 2 ]  = ~1 ~ [ x ) _ x ) _ A ( x ) _ x ) _ x ~ W x ~ ) _ l n a i j ] 2 ,  
i=l j=i+l 

where A is a scalar and 0 _< A < 1. Then, 

n- -1  

E (a.21 
i=l j=i+l 

with equality if and only if 

x ~ - x ] - x ~ + x ~ = O ,  i = l  . . . . .  n - i ,  j = i + l  . . . .  ,n. 

This condition can be written as follows: For any i, i = 1 , . . . ,  n, 

x]-x i i  = x l - x ~ ,  j =  l . . . . .  n. 

Summing up with respect to j and using (A.1), we get 

 xl_ 
j = l  j = l  

so that x ) = x  2, i = 1 . . . . .  n. Therefore,  equality of (A.2) holds if and only if x 1 = x 2. This implies that 
h" (a )  > 0 in the feasible region to QP problem (2.4). It can be proved that h " ( a ) >  0 means g(x) is 
strictly convex (e.g., Mangasarian, 1969). Therefore,  QP problem (2.4) has only one optimal solution. 
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